University of California – Berkeley Symbolic Logic Worksheet


1 attachmentsSlide 1 of 1attachment_1attachment_1

Unformatted Attachment Preview

Introduction to Symbolic Logic
Homework 6
Due at 11:59 pm on May 29 (Friday)
1. This homework assignment will be challenging in that, unlike the previous ones, no hint
will be provided in the problem statements. But I stick to my syllabus: You are
encouraged to discuss with other students, with your TA, or with me. But you have to
write down your answers by yourself; copying answers from other students amounts to
plagiarism. In case you have not known my email discussion style: If you discuss your
homework with me by email, please formulate a specific question or explain the specific
difficulty you have, and then I will (i) send to you a hint tailored to your need and (ii) ask
you to give it one more try and then get back to me. Trying to formulate the difficulty you
have is an important way of learning.
2. When you construct a derivation in this homework assignment, every step should

either follow one of the 2×4 + 1 basic rules of inference
or cite a derivation that you have constructed in this homework by using just the 2×4
+ 1 basic rules (just like what I did when teaching the “Skip and Revisit” strategy).
3. When you construct a truth table to show that an argument is logically valid, you have to

mark every row in which the premises are all true
and then mark every row in which the conclusion is true.
4. When you construct a truth table to show that an argument is not logically valid, you
have to

mark every row in which the premises are all true but the conclusion is not true.
Problem 6.1
Construct a derivation for each of
the those four arguments:
————— (10%)
(~Y) ⊃ (~X)
————— (15%)
————— (25%)
————— (25%)
Problem 6.2 (25%)
The following is my symbolization of a simplified version of Hume’s argument for
inductive skepticism (as mentioned in Unit 1):
A ⊃ (D v I)
(A & I) ⊃ C
C ⊃ (~G)
Translation Manual (which you won’t really need below)
G: Your justification of induction is good.
A: It is an argument for the thesis that induction is reliable.
D: It is a deductive argument.
I: It is an inductive argument.
C: It is a circular argument.
Decide whether this argument is logically valid, under the following restrictions:

You must state your answer, “Yes” or “No”, to the question of whether it is
logically valid.
You must justify your answer with either method 1 or method 2:
❖ Method 1: Construct a truth table for this argument, and mark the relevant
rows as required on the “instructions” page. (Warning: There will be 25 row
and 5 + 5 + 1 columns and, hence 352 cells in total.)
❖ Method 2: Construct a derivation for this argument. If you make it, you will
show that the answer is “Yes”. If you fail to make it, resort to method 1.

Purchase answer to see full

Explanation & Answer:
2 pages


symbolic logic


User generated content is uploaded by users for the purposes of learning and should be used following Studypool’s honor code & terms of service.

Reviews, comments, and love from our customers and community:

This page is having a slideshow that uses Javascript. Your browser either doesn't support Javascript or you have it turned off. To see this page as it is meant to appear please use a Javascript enabled browser.

Peter M.
Peter M.
So far so good! It's safe and legit. My paper was finished on time...very excited!
Sean O.N.
Sean O.N.
Experience was easy, prompt and timely. Awesome first experience with a site like this. Worked out well.Thank you.
Angela M.J.
Angela M.J.
Good easy. I like the bidding because you can choose the writer and read reviews from other students
Lee Y.
Lee Y.
My writer had to change some ideas that she misunderstood. She was really nice and kind.
Kelvin J.
Kelvin J.
I have used other writing websites and this by far as been way better thus far! =)
Antony B.
Antony B.
I received an, "A". Definitely will reach out to her again and I highly recommend her. Thank you very much.
Khadija P.
Khadija P.
I have been searching for a custom book report help services for a while, and finally, I found the best of the best.
Regina Smith
Regina Smith
So amazed at how quickly they did my work!! very happy♥.